The correct option is B 8
Given that, |z1|=|z2|=|z3|=|z4|=1
and z1+z2+z3+z4=0 ....(1)
⇒¯z1+¯z2+¯z3+¯z4=0 ....(2)
Now, |z1−z2|2=(z1−z2)(¯z1−¯z2)=|z1|2+|z2|2−(z1¯z2+¯z1z2)
E=|z1−z2|2+|z2−z3|2+|z3−z4|2+|z4−z1|2
⇒E=2(|z1|2+|z2|2+|z3|2+|z4|2)−(z1¯z2+¯z1z2)−(z1¯z2+¯z1z2)−(z1¯z2+¯z1z2)−(z1¯z2+¯z1z2)
⇒E=8−[(z1+z3)(¯z2+¯z4)+(¯z1+¯z3)(z2+z4)]
⇒E=8+[(z1+z3)(¯z1+¯z3)+(¯z1+¯z3)(z1+z3)] ....[ from (1) & (2)]
⇒E=8+2|z1+z3|2
Since, |z1+z3|2≥0
Therefore, E≥8
Ans: B