If z1,z2,z3,z4 are roots of the equation a0z4+a1z3+a2z2+a3z+a4=0 where a0,a1,a2,a3 and a4 are real, then
a0z4+a1z3+a2z2+a3z+a4=0
⇒ a0¯z4+a1¯z3+a2¯z2+a3¯z+a4=0 (taking congugate on both sides)
⇒ a0(¯z)4+a1(¯z)3+a2(¯z)2+a3¯z+a4=0
⇒ ¯z is a root of the equation if z is a root. so, option(A) is correct.
Also if z1 is real, z1=¯z1.
If z1 is non real complex then ¯z1 is also a root because imaginary roots occur in conjugate pairs.