If z1,z2,...,zn lie on |z|=r and Re(n∑j=1n∑k=1zjzk)=0, then
A
n∑j=1zj=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
∣∣
∣∣n∑j=1zj∣∣
∣∣=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
n∑j=11zj=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are An∑j=1zj=0 Bn∑j=11zj=0 C∣∣
∣∣n∑j=1zj∣∣
∣∣=0 Let zi=r(cosθi+i.sinθi) Re(n∑j=1n∑k=1zjzk)=0 Thus, (z1+z2+...+zn)×(1z1+1z2...1zn)=0 Thus, [(cosθ1+...cosθn)+i.(sinθ1+...sinθn)]×[(cosθ1+...cosθn)−i.(sinθ1+...sinθn)]=0 So, (cosθ1+...cosθn)2+(sinθ1+...sinθn)2=0 So, (cosθ1+...cosθn)=(sinθ1+...sinθn)=0 Hence (a), (b), (c) are correct.