If |Z-2+1| ≤2, the greatest and least values of |z + 4| are
√37+2, √37-2
Given |z-2+i| ≤ 2
⟹ |z+4-6+i| ≤2
|(z+4)- (6-i)| ≤2
Using |(|Z1|-|Z2|)| ≤ |Z1-Z2|
⟹ |(|z+4|- |6-i|)| ≤ |(z+4)- (6-i)| ≤2
⟹ |(|z+4|-|6-i|)|≤2
-2 ≤ |z+4| - √37 ≤ 2
√37 - 2 ≤ |z+4| ≤ √37 +2
so, the greatest value of |z+4| = √37 - 2