The correct option is A none of these
Let z=x+iy.
Then, |z2−1|=|z|2+1
⇒|(x2−y2−1)+2ixy|=x2+y2+1
⇒(x2−y2−1)2+4x2y2=(x2+y2+1)2
⇒x4+y4+1−2x2y2+2y2−2x2+4x2y2
=x4+y4+1+2x2y2+2y2+2x2
⇒x=0
Hence, z lies on imaginary axis.
Hence, option (D) is the correct answer.