Given : |z−2−3i|2+|z−4−3i|2=λ
Let z=x+iy, then
(x−2)2+(y−3)2+(x−4)2+(y−3)2=λ
⇒2x2+2y2−12x−12y=λ−38
⇒x2+y2−6x−6y−λ−382=0
We know the equation of circle is r=√g2+f2−c for the circle with eq: x2+y2+2gx+2fy+c=0
The minimum possible radius of the circle is 0,
so, √9+9+λ−382=0
∴λ=2