The correct option is B Parabola
z=x+iy
=|z|cosθ+i|z|sinθ
|z−2−i|
=|(x−2)+i(y−1)|
=√(x−2)2+(y−1)2
=|z|√2|cosθ−sinθ|
=1√2||z|cosθ−|z|sinθ|
=1√2|x−y|
Hence
(x−2)2+(y−1)2=(x−y)22
2[x2−4x+4+y2−2y+2]=x2+y2−2xy
x2+y2−8x−4y+12=−2xy
x2+y2+2xy−8x−4y+12=0
ax2+2hxy+by2+2gx+2fy+c=0
a=1,b=1,c=12,g=−4,f=−2,h=1
Hence
abc+2fgh−af2−bg2−ch2
=(12)+2(8)−4−16−12
=28−32
=−4
△≠0
(2h)2−4ab
=4−4
=0
Hence it is a parabola.