If z2+z+1=0 then the value of (z+1z)2+(z2+1z2)2+(z3+1z3)2+........+(z21+1z21)2 is equal to
A
21
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
42
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A21 Given, z2+z+1=0 Then (2+12)2+(z2+1z2)2+(z3+1z3)2+⋯+(z21+1z2)2 let z=w⇒w2+w+1=0
⇒(w+1ω)2+(w2+1ω2)2+(ω3+1ω3)2+…+(ω21+1ω21)2⇒(ω+ω2)2+(ω2+ω)2+(1+1)2+…+((ω3)7+1(ω3)7)2⇒(−1)2+(−1)2+22+…+22⇒14(−1)2+7(2)2⇒14+28=42 Hence (B) is the correct option