Given equation is z2+z+1=0 ⇒z=ω,ω2
Now, (z+1z)+(z2+1z2)+(z3+1z3)+⋯+(z6+1z6) =(ω+ω2)+(ω2+ω)+(ω3+ω−3)+(ω+ω2)+(ω2+ω)+(ω6+ω−6) Using 1+ω+ω2=0 =−1−1+(1+1)−1−1+(1+1)=0