The correct option is B (−1,0)
Let z=α is the real root of the equation
α3+(3+2i)α+(−1+ia)=0
⇒(α3+3α−1)+(2α+a)i=0
As α is a real root of the equation, the real & the imaginary part of the equation must be zero.
∴a+2α=0⇒α=−a2
so using value of α we get, −a38−3a2−1=0⇒a3+12a+8=0
Now, Let f(x)=a3+12a+8
f′(a)=3a2+12>0 ∀ a∈R
∴f is an increasing function ∀ x∈R
f(−2)=(−2)3+12(−2)+8<0
f(−1)=(−1)3+12(−1)+8<0
f(0)=(0)3+12(0)+8>0
f(1)=(1)3+12(1)+8>0
f(2)=(2)3+12(2)+8>0
∴a lies in the interval (−1,0)