If (z3 + 1z3) - (z2 + 1z2) + (z+1z) - 1 = (z+1z−2α) (z+1z−2β) (z+1z−2γ) Find the value of α.β.γ.
.
(z3 + 1z3) - (z2 + 1z2) + (z+1z) - 1 = (z+1z−2α) (z+1z−2β) (z+1z−2γ)---------(1)
Lets assume z+1z = 2x--------(2)
(z+1z)2 = z2 + 1z2 + 2(z×1z)
z2 + 1z2 = (2x)2 - 2 = 4x2 - 2 ------------(3)
(z+1z)3 = z3 + 1z3 + 3(z+1z)
z3 + 1z3 = (2x)3 - 3 ×(2x) = 8x3 - 6x-----------(4)
Substitute the value of (z+1z), z2 + 1z2 and z3 + 1z3 in equation (1)
(8x3−6x)−(4x2−2)+(2x)−1=(2x−2α) (2x - 2β) (2x - 2γ)
8x3 - 4x2 - 4x + 1 = 8(x - α) (x - β) (x - γ)--------------(5)
From equation 5,we see that α,β and γ are the roots of the equation 8x3 - 4x2 - 4x + 1 = 0
Product of the roots α,β,γ = −18.