If |z−3i|=3 and argz∈(0,π2) then cot(argz)−6z is equal to ......................
A
-i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
i
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
-2i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B i |z−3i|=3 gives x2+(y−3)2=9 x=3cosA and y=3sinA+3 Hence z=3[cosA+i(sinA+1)] =3[sin(π2−A)+i(1+cos(π2−A))] =3[2sin(π4−A2)cos(π4−A2))+i2cos2(π4−A2))] =6cos(π4−A2)[sin(π4−A2)+icos(π4−A2)] =6cos(π4−A2).ei(π4−A2) .... after using sinθ=cos(900−θ) Hence cot(argz) =cot(π4−A2) =tan(π4−A2) ...(i) and 6z =sec(π4−A2).e−i(π4+A2) =sec(π4−A2)[sin(π4−A2)−icos(π4−A2)] after using sinθ=cos(900−θ) =tan(π4−A2)−i ...(ii) Hence i−ii =−(−i) =i