If |z+7| ≤ 9, for z ∈ C, the greatest value of |Z+2| is
|Z1 + Z2| ≤ |Z1| + |Z2|
Given |z+7| ≤9
⟹ |z+2|= |z+7-5|≤ |z+7|+ |5|
= |z+7| +5
≤9+5
⟹ |z+2| ≤14
So, the greatest value of |z+2|=14
Alternate method
We know that ||Z1|−|Z2|| ≤ |Z1|−|Z2|
Here take |Z1| = Z+2 |Z2| = 5
⇒ |(|z+2|- |5|)| ≤ |z+7| ≤9
⇒ |(|z+2|-5)| ≤9
⇒ -9 ≤ |z+2|-5 ≤9
-9 + 5 ≤ |z+2| ≤14
-4 ≤ |z+2|≤14
Least value of |z +2|= -4
Greatest value of |z + 2| = 14