If z and ω are two unimodular complex number such that z2+ω2=32, then |z+¯z|2+|ω+¯ω|2 is
Let z=cosθ+isinθ
w=cosϕ+isinϕ
z2+w2=cos2θ+cos2ϕ+i(sin2θ+sin2ϕ)
z2+w2=32⇒cos2θ+cos2ϕ=32,sin2θ+sin2ϕ=0
Now,
|z+¯z|2+|w+¯w|2=4cos2θ+4cos2ϕ
2(1+cos2θ)+2(1+cos2ϕ)
=4+232=7