If z be a non- real complex number satisfying |z|=2, then which of the following is/are true?
arg(z−2z+2)=±π2
|z2−1|≥3
|z2−1|≤5
(a) For P(z), arg (z−2z+2)=π2
and for Q(z), arg (z−2z+2)=−π2
⇒ (a) is true.
(b) Δ AOB is equilateral.
∴∠AOB=π3 and ∠ACB=π6
∴arg(z−1+i√3z+1+i√3)=π6 (By rotation)
⇒arg(z+1+i√3z−1+i√3)=−π6
⇒(b) is not true.
(c) and (d)
We have |z2−1|2=(z2−1)(¯z2−1)=z2¯z2−z2−¯z2+1
Taking z=x+iy,
|z2−1|2=|z|4−2(x2−y2)+1=17−2(x2−y2)=25−4x2.........∵x2+y2=4
Now given |z| = 2 ⇒ range of x is [−2,2]
⇒9≤|z2−1|2≤25
Hence, 3≤|z2−1|≤5
⇒ (c) and (d) are true.