wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=cos2θ+isin2θ then which is correct

A
nr=0Crcos2rθ=2ncosnθcosnθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nr=1Crcos2rθ=2nsinnθcosnθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nr=0Crsin2rθ=2ncosnθsinnθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
nr=0Crsin2rθ=2nsinnθsinnθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A nr=0Crcos2rθ=2ncosnθcosnθ
C nr=0Crsin2rθ=2ncosnθsinnθ
By Binomial Theorem
(1+z)n=C0+C1z+C2z2+C3z3+....+Cnzn=nr=0Crzr ...(1)
Substituting z=cos2θ+isin2θ in eq. (1), we get
(1+cos2θ+isin2θ)n=nr=0Cr(cos2θ+isin2θ)r
nr=0Cr(cos2rθ+isin2rθ) ...{De Moivre's Theorem}
[2cosθ(cosθ+isinθ)]n=nr=0Crcos2rθ+inr=0Crsin2rθ
nr=0Crcos2rθ+inr=0Crsin2rθ=2ncosnθ(cosnθ+isinnθ) ...{De Moivre's Theorem}

nr=0Crcos2rθ+i(nr=0Crsin2rθ)=2ncosnθcosnθ+i(2ncosnθsinnθ)
On comparing real and Imaginary parts, we get
nr=0Crcos2rθ=2ncosnθcosnθ&nr=0Crsin2rθ=2ncosnθsinnθ
Hence, option 'A' and 'C' are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon