The correct options are
A n∑r=0Crcos2rθ=2ncosnθcosnθ
C ∑nr=0Crsin2rθ=2ncosnθsinnθ
By Binomial Theorem
(1+z)n=C0+C1z+C2z2+C3z3+....+Cnzn=∑nr=0Crzr ...(1)
Substituting z=cos2θ+isin2θ in eq. (1), we get
(1+cos2θ+isin2θ)n=∑nr=0Cr(cos2θ+isin2θ)r
⇒∑nr=0Cr(cos2rθ+isin2rθ) ...{De Moivre's Theorem}
⇒[2cosθ(cosθ+isinθ)]n=∑nr=0Crcos2rθ+i∑nr=0Crsin2rθ
⇒∑nr=0Crcos2rθ+i∑nr=0Crsin2rθ=2ncosnθ(cosnθ+isinnθ) ...{De Moivre's Theorem}
⇒∑nr=0Crcos2rθ+i(∑nr=0Crsin2rθ)=2ncosnθcosnθ+i(2ncosnθsinnθ)
On comparing real and Imaginary parts, we get
∑nr=0Crcos2rθ=2ncosnθcosnθ&∑nr=0Crsin2rθ=2ncosnθsinnθ
Hence, option 'A' and 'C' are correct.