wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=cosθ+isinθ be a root of the equation a0zn+a1zn1+a2zn2++an1z+an=0, then

A
a1sin θ+a2sin 2θ++ansin nθ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a0+a1cosθ+a2cos2θ+...+ancosnθ=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a0+a1cosθ+a2cos2θ+...+ancosnθ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a0+a1cosθ+a2cos2θ+...+ancosnθ=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A a1sin θ+a2sin 2θ++ansin nθ=0
C a0+a1cosθ+a2cos2θ+...+ancosnθ=0
Dividing the given equation by zn, we get
a0+a1z1+a2z2++an1z1n+anzn=0
Now, z=cos θ+isin θ=eiθ satisfies the above equation.
Hence,
a0+a1eiθ+a2e2iθ++an1ei(n1)θ+aneinθ=0
(a0+a1cos θ+a2cos 2θ++ancos nθ) i(a1sin θ+a2sin 2θ++ansin nθ)=0

a0+a1cosθ+a2cos2θ+...+ancosnθ=0
and a1sin θ+a2sin 2θ++ansin nθ=0

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon