The correct options are
A a1sin θ+a2sin 2θ+……+ansin nθ=0
C a0+a1cosθ+a2cos2θ+...+ancosnθ=0
Dividing the given equation by zn, we get
a0+a1z−1+a2z−2+……+an−1z1−n+anz−n=0
Now, z=cos θ+isin θ=eiθ satisfies the above equation.
Hence,
a0+a1e−iθ+a2e−2iθ+……+an−1e−i(n−1)θ+ane−inθ=0
⇒(a0+a1cos θ+a2cos 2θ+……+ancos nθ) −i(a1sin θ+a2sin 2θ+……+ansin nθ)=0
∴a0+a1cosθ+a2cos2θ+...+ancosnθ=0
and a1sin θ+a2sin 2θ+……+ansin nθ=0