wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=cosθ+isinθ+isinθ is a root of the equation a0zn+a1zn1+a2zn2+...+an1z+an=0, then prove the following
(i) a0+a1cosθ+a2cos2θ+...+ancosnθ=0
(ii) a1sinθ+a2sin2θ+...+ansinnθ=0.

Open in App
Solution

z=cosθ+isinθ+isinθ
a0zn+a1zn1+a2zn2+.....+an1z+an=0
When zn=cosθ
a0+a1cosθ+a2cos2θ+......+ancosnθ
a0zn+a1zn1+a2zn2+.....+an1+z+an=0
a0zn=a0
a0zn1=a1cosθ.....
a0+a1cosθ+.....+ancosnθ=0
Similarly when zn=sinθ
a0sinθ+a1sinθ+a2sin2θ+.......+ansinnθ=0
a0+a1sinθ+a2sin2θ+.......+ansinnθ=0.
Hence, the answer is 1 statement.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon