If z=1(2+3i)2, then |z| =
113
15
112
none of these
Let z=1(2+3i)2⇒ z=14+9i2+12i⇒ z=14−9+12i⇒ z=1−5+12i⇒ z=1−5+12i×−5−12i−5−12i⇒ z=−5−12i25+144⇒ z=−5169−12i169⇒ |z|=√251692+1441692⇒ |z|=1√169⇒ |z|=113
If z=1(1−i)(2+3i),, then |z| =
If z lies on the circle |z−1|=1, then z−2z equals
Arguments of Z = (2+i)[4i+(1+i)2] is :