If z=1+2i1−(1−i)2, then arg (z) equals
0
π2
π
none of these
Let z=1+2i1−(1−i)2⇒ z=1+2i1−(1+i2−2i)⇒ z=1+2i1−(1−1−2i)⇒ z=1+2i1+2i ⇒ z=1
Since point (1, 0) lies on the positive direction of real axis, we have :
arg (z) = 0
If z lies on the circle |z−1|=1, then z−2z equals
If f(z)=7−z1−z2,wehre z=1+2i,then |f(z)| is
If z=(i)i, where i=√−1, then Re(z) is: