The correct option is D 4
z lies in the first quadrant
∴ if z=x+iy then x>0,y>0
Re(z)+Im(z)=3
x+y=3⟶1
We have to maximize [Re(z)]2Im(z)=x2y
Let S=x2y
S=x2(3−x) (From equation 1)
S=3x2−x3
dSdx=6x−3x2=0
3x(2−x)=0
x=0,x=2
d2Sdx2=ddx(6x−3x2)=6−6x
[d2Sdx2]x=0=6−0=6>0 ∴ At x=0, S is minimum
[d2Sdx2]x=2=6−12=−6<0 ∴ At x=2, S is maximum
∴[Re(z)]2Im(z)=x2y is maximum when x=2
If x=2 & y=1 (from equation 1)
∴x2y=(2)2.1=4