If z is a complex number such that −π/2≤ arg z≤π/2, then which of the following inequality is true?
A
∣∣z−¯¯¯z∣∣≤|z|(arg z- arg ¯¯¯z)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
∣∣z−¯¯¯z∣∣≥|z|(arg z - arg ¯¯¯z)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∣∣z−¯¯¯z∣∣<|z|(arg z - arg ¯¯¯z)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A∣∣z−¯¯¯z∣∣≤|z|(arg z- arg ¯¯¯z) Let z=|z|(cosA+isinA)whereA=arg(z),−Π2≤A≤Π2 |z−¯z|=|z||cosA+isinA−(cosA−isinA)|=2|z||isinA| ⟹|z−¯z|=2|z||sinA| for−π2≤A≤π2|sinA|≤|A| ⟹|z−¯z|≤2|z||A|=|z||A−(−A)| ⟹|z−¯z|≤|z||argz−arg¯z| Ans: A