The correct option is D i tan (arg (z-1))
Since |z−1|=1,
∴ Let z−1=cosθ+isinθ
Then, z−2=cosθ+isinθ−1
=−2sin2θ2+2isinθ2cosθ2=2isinθ2(cosθ2+isinθ2) ... (1)
and z=1+cosθ+isinθ
=2cos2θ2+2isinθ2cosθ2=2cosθ2(cosθ2+isinθ2) ... (2)
From (1) and (2), we get z−2z=itanθ2=itan(arg(z−1))(∵arg=θ2)