wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z is any complex number satisfying |z32i|2, then the minimum value of |2z6+5i| is

Open in App
Solution

|z32i|2
It implies that z lies on or inside the circle of radius 2 and centre (3,2).



|2z6+5i|min=2z3+(52)imin
=2(AB)=2(ACBC)=2(33)2+(2+52)22
=2(2+522)
=5

Alternate Solution:
Given |z32i|2 (1)
|2z6+5i|=|2(z32i)+9i|
||2(z32i)||9i|| (|z1+z2|||z1||z2||)
|2|z32i||9i||
|2z6+5i||2|z32i|9|
From equation (1),
2|z32i|[0,4]
|2|z32i|9|[5,9]
|2z6+5i|5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Agriculture
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon