The correct options are
A √32−i2
B −√32−i2
D i
Given equation is ¯¯¯z=iz2
Assuming z=a+ib⇒¯¯¯z=a−ib
Now,
z2=(a+ib)2=a2−b2+2abi
Putting in the given equation, we get
⇒a−ib=i(a2−b2+2abi)⇒a−ib=−2ab+i(a2−b2)⇒a(1+2b)+i(b2−b−a2)=0⇒a(1+2b)=0, (b2−b−a2)=0
Using first equation, we get
a(1+2b)=0⇒a=0 or b=−12
When a=0, then
b2−b−a2=0⇒b2−b=0⇒b=0,1
When b=−12, then
b2−b−a2=0⇒a2=34⇒a=±√32
Therefore, the possible compex numbers are
z=0+0i,(0+i),(√32−i2),(−√32−i2)
As z is a non zero complex number, so
z=i,(√32−i2),(−√32−i2)