If z is unimodular complex number then z=(1+ia1−ia)4 has
We have
(1+ia1−ia)4=z is a fixed complex
number
⇒(1+ia1−ia)4=cosθ+isinθ
1+ia1−ia=cos(2nπ+θ4)+isin2nπ+θ4
⇒1+ia1−ia=cosθ+isinθ
Where,ϕ=2nϕ+ϕ4
applying
componendo
dividend,
1+ia+1−ia1+ia=1+ia=cosθ+isinϕ+1cosθ+isinϕ−1
⇒22ia=cosθ+isinϕ+1cosθ+isinϕ−1
⇒1ia=2ωs2ϕ2+2isinϕ2cosϕ2−2sin2ϕ2+2isinϕ2cosϕ2
=co+θ2(ωsθ2+isinθ2)(−sinθ2+isinθ2)
⇒a=−tanθ2
=−tan2nπ+θ8
n=0,1,2,3
i.ea=−tanθ8,−tan(π4+θ8),−tan(π2+θ8),
4realroots,−tan(3π2+θ8)1ia
=icotθ2