If z=(√32+i2)107+(√32−i2)107, then what is the imaginary part of z equal to?
z=(√32+i2)107+(√32−i2)107
∴z=(cosπ6+isinπ6)107+(cos11π6+isin11π6)107
Using Demoivre's theorem ,we get
∴z=(cos107π6+isin107π6)+(cos(107)11π6+isin(107)11π6)
=(cos(16π+11π6)+isin(16π+11π6))+(cos((16π+11π6)11)+isin((16π+11π6)11))
=(cos(11π6)+isin(11π6))+(cos(176π+121π6)+isin(176π+121π6))
=(cos(11π6)+isin(11π6))+(cos(121π6)+isin(121π6))
=(cos(11π6)+isin(11π6))+(cos(121π6)+isin(121π6))
=(cos(11π6)+isin(11π6))+(cos(20π+π6)+isin(20π+π6))
=(cos(11π6)+isin(11π6))+(cos(π6)+isin(π6))
=(√32−i2)+(√32+i2)
=√3
=√3
∴Im(z)=0
So, the answer is option (A).