wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=(32+i2)107+(32i2)107, then what is the imaginary part of z equal to?

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 0

z=(32+i2)107+(32i2)107

z=(cosπ6+isinπ6)107+(cos11π6+isin11π6)107

Using Demoivre's theorem ,we get

z=(cos107π6+isin107π6)+(cos(107)11π6+isin(107)11π6)

=(cos(16π+11π6)+isin(16π+11π6))+(cos((16π+11π6)11)+isin((16π+11π6)11))

=(cos(11π6)+isin(11π6))+(cos(176π+121π6)+isin(176π+121π6))

=(cos(11π6)+isin(11π6))+(cos(121π6)+isin(121π6))

=(cos(11π6)+isin(11π6))+(cos(121π6)+isin(121π6))

=(cos(11π6)+isin(11π6))+(cos(20π+π6)+isin(20π+π6))

=(cos(11π6)+isin(11π6))+(cos(π6)+isin(π6))

=(32i2)+(32+i2)

=3

=3

Im(z)=0

So, the answer is option (A).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon