if z=(2√32+i2)5 + (2√32−i2)5 , then
Re(z)=0
Im(z)=0
Re(z)>0,Im(z)>0
Re(z)>0,Im(z)<0
Given that z=(2√32+i12)5 + (2√32+i12)5
=[cosπ6+isinπ6]5 + [cosπ6−isinπ6]5
= cos5π6+isin5π6+cos5π6-isin5π6
hence Im(z)=0