Letz=x+iyarg(x+i(y+1))=Π4tan−1y+1x=Π4y+1x=1=>x=y+1x−y=1
assume x=1; y=0 (minimun value)
Therefore z=1=|z+4−3i|+|z−4+3i|=|1+4−3i|+|1−4+3i|=|5−3i|+|−3+3i|=√9+9+√9+9=2√18=>√72