wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=logtanx+tany, then sin2x·zx+sin2y·zy is equal to


A

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

4

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

2


Explanation for the correct option.

Step 1. Find the value of zx and zy.

Partially differentiating z=logtanx+tany with respect to x, we get

zx=xlogtanx+tany=1tanx+tanysec2x+0=sec2xtanx+tany=1cos2xtanx+tanysecx=1cosx

Partially differentiating z=logtanx+tany with respect to y, we get

zy=ylogtanx+tany=1tanx+tany0+sec2y=sec2ytanx+tany=1cos2ytanx+tanysecx=1cosx

Step 2. Find the value of the expression.

In the expression sin2x·zx+sin2y·zy

substituting the found values of zx and zy and using the formula sin2A=sinAcosA, we get

sin2x·zx+sin2y·zy=2sinxcosx·1cos2xtanx+tany+2sinycosy·1cos2ytanx+tany=2(tanx+tany)sinx·1cosx+siny·1cosy=2(tanx+tany)sinxcosx+sinycosy=2(tanx+tany)tanx+tany=2

So the value of the expression sin2x·zx+sin2y·zy is 2.

Hence, the correct option is B.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle Sum Property
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon