If z=11+2i-5i1-2i-35+3i5i5-3i7, then
z is purely real
z is purely imaginary
z-z¯=0
z-z¯ is purely imaginary
Explanation for the correct option.
Find the value of z.
Evaluate the determinant and find z.
z=11+2i-5i1-2i-35+3i5i5-3i7=1-21-5-3i5+3i-1+2i71-2i-5i5+3i+-5i1-2i5-3i--15i=-21-25-9i2-1+2i7-14i-25i-15i2-5i5-3i-10i+6i2+15i=-21-25+9-1+2i7-39i-15-1-5i5+2i+6-1i2=-1=-21-34-1+2i22-39i-5i-1+2i=-55-22+39i-44i+78i2+5i-10i2=-77+78-1-10-1i2=-1=-77-78+10=-145
So, z has no imaginary part so it is purely real.
Hence, the correct option is A.