If zr = cos (π2r) + i sin (π2r) where i = √−1 . Find the value of z1.z2.z3.z4……∞
If zr = cos (π2r) + i sin (π2r) ................. (1)
find the values of z1.z2.z3.z4……∞ by putting r = 1,2,3 ...... in equation (1)
z1.z2.z3.z4……∞ ..............(2)
Substitute the value of z1,z2,z3,z4……∞ in equation 2.
= [cosπ2+isinπ2][cosπ22+isinπ22][cosπ23+isinπ23] ......
= [cos(π2+π22+π23+……∞)+isin(π2+π22+π23+……∞)]
π2 + π22 + π23+……∞ is a GP
Sum of infinite GP (when common ratio <1 ) = a1−r
So,
= cos (π21−12)+isin(π21−12)
= cos(π)=isin(π)=−1