The correct options are
A zn+1zn=2cos(nπ2−nθ)
C zn−1zn=2isin(nθ−nπ2)
Here, we can write the complex number z in Euler's form as
z=sinθ−icosθ
z=cos(θ−π2)+isin(θ−π2)
⇒z=ei(θ−π2)
⇒zn=ei(nθ−nπ2)
Similarly z−n=ei(−nθ+nπ2)
Thus, adding both we get
zn+1zn=ei(nθ−nπ2)+ei(−nθ+nπ2)
zn+1zn=cos(nθ−nπ2)+isin(nθ−nπ2)+cos(nθ−nπ2)−isin(nθ−nπ2)
⇒zn+1zn=2cos(nπ2−nθ)
Similarly subtracting both we get
zn−1zn=2isin(nθ−nπ2)