The correct option is A arg(zw)=2π3, arg(wz)=π3
z=√3+i and w=3i
tanα=|1||√3|⇒α=π6
As z lies in the first quadrant So, argz=α=π6
∵w lies on positive y− axis so
arg(w)=π2
Now
∵arg(z1z2)=argz1+argz2+2kπ,k∈Z
and
∵argz1z2=argz1−argz2+2kπ,k∈Z
∴argwz=argz+argw+2kπ,k∈Z
=π6+π2+2kπ,k∈Z
At k=0, arg(wz)=2π3∈(−π,π]
So, principal argument of wz is 2π3
and
argwz=argw−argz+2kπ,k∈Z
=π2−π6+2kπ,k∈Z
At k=0, argwz=π3∈(−π,π]
So, principal argument of wz is π3