The correct option is C −3+4i
Given : z=√−7−24i
Let z=a+ib, so
z2=−7−24i⇒(a+ib)2=−7−24i⇒a2−b2+2i(ab)=−7−24i⇒a2−b2=−7, ab=−12
Now,
(a2+b2)2=(a2−b2)2+4a2b2⇒(a2+b2)2=49+4(12)2⇒(a2+b2)2=625⇒a2+b2=25 (∵a,b∈R)
Using a2−b2=−7, a2+b2=25, we get
a2=9, b2=16⇒a=±3, b=±4
Using ab=−12, we get
a=3,b=−4a=−3,b=4
Hence, z=3−4i,−3+4i
Alternate solution :
We know that,
√a−ib=±[√12(√a2+b2+a)−i√12(√a2+b2−a)]
If (b>0)
Hence z=√−7−24i=√−7−(24)i
z=±[√12(√72+242−7)−i√12(√72+242+7)]
z=±(3−4i)
∴z=−3+4i and z=3−4i