If z=x+iy and w=(1−iz)(z−i) and |w|=1, then prove that z is purely real.
Open in App
Solution
We have, |w|=1⟹∣∣∣1−izz−i∣∣∣=1 or |1−iz||z−i|=1 or |1−iz|=|z−i| (1) or |1−i(x+iy)|=|x+iy−i|, where z=x+iy or |1+y−ix|=|x+i(y−1)| or √(1+y)2+(−x)2=√x2+(y−1)1 or (1+y)2+x2=x2+(y−1)2 or y=0 ⟹z=x+i0=x, which is purely real. Ans: 1