If z=x+iy and w=1−ziz−i, show that |W|=1⇒z is purely real.
We have. |w|=1
∣∣1−ziz−i∣∣=1⇒∣∣1−ziz−i∣∣=1 [∴∣∣z1z2∣∣=|z1||z2|]
⇒|1−zi|=|z−i|⇒|1−(x+iy)|=|x+iy−i| [∵z=x+iy]
⇒|1+y−xi|=|x+(y−1)2
⇒√(1+y)+x2=√x2+(y−1)2
⇒1+2y+y2+x2+y2−2y+1⇒y=0
∴z=x+0i=x, which is purely real.