The correct option is C −2
Given, z=x−iy and z1/3=p+iq
⇒(x−iy)1/3=p+iq
⇒x−iy=(p+iq)3
⇒x−iy=p3−iq3+3p2qi−3pq2
⇒x−iy=(p3−3pq2)+i(3p2q−q3)
On comparing both sides, we get
x=p3−3pq2
and −y=3p2q−q3
⇒xp=p2−3q2
and yq=q2−3p2
Now, xp+yq=p2−3q2+q2−3p2
⇒xp+yq=−2p2−2q2
⇒xp+yq=−2(p2+q2)
⇒(xp+yq)/(p2+q2)=−2