|z|=1⟹z=eiθ=x+iy
⟹x=cosθ,y=isinθ
Now cosθ and sinθ∈Q. Also,
∣∣z2n−1∣∣2=(z2n−1)(¯¯¯z2n−1)
=(z¯¯¯z)2n−z2n−¯¯¯z2n+1
=2−(z2n+¯¯¯z2n)
=2−2cos2nθ=4sin2nθ
=∣∣z2n−1∣∣=2|sinnθ|
Now,
sinnθ=nC1cosn−1θsinθ−nC3cosn−3θsin3θ+...
= Rational number (∴sinθ,cosθ are rationals)
⟹∣∣z2n−1∣∣= Rational number
Ans: 1