wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z=x+iy,w=2iz2zi and |w|=1, find the locus of z and illustrate it in the complex plane.

Open in App
Solution

|ω|2=ω¯ω=(2iz2zi)(2¯i¯z2¯z¯i)=(2+i¯z2¯z+i)(2iz2zi)
1=(42iz+2i¯zi2z¯z4z¯z2i¯z+2izi2)=42i(x+iy)+2(xiy)i2|z|24(|z|)22i(xiy)+2i(x+iy)+1
4(x2+y2)2ix+2i2y+2ix+2i2y+1=42ix2i2y+2ix2i2y+1(x2+y2)
3(x2+y2)3+4i2y=4i2y
3(x2+y2)3+8i2y=03(x2+y2)38y=0
x2+y28y31=0
x2+(y43)2=1+169=259=(52)2
z4i3=52

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon