If z=z(x) and (2+cosx)dzdx+(sinx)⋅z=sinx, z(x)>0 and z(π2)=3, then z(π3) is
A
72
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A72 (2+cosx)dzdx+(sinx)⋅z=sinx⇒(2+cosx)dzdx=−(z−1)⋅sinx⇒dzz−1=−sinx2+cosxdx Integrating ⇒ln|z−1|=ln|2+cosx|+C It is given z(π2)=3 ∴ln2=ln2+C⇒C=0 When x=π3 ln|z−1|=ln52⇒z=72