If z1=a+ib and z1=c+id are complex numbers such that |z1|=|z2|=1 and R(z1¯¯¯¯¯z2) =0, then the pair of complex numbers w1=a+ic and w2=b+id satisfies
All the above
Since|z1|=|z2|=1, we have
z1=cosθ1+isinθ1,z2=cosθ2+isinθ2
where θ1=arg(z1) and θ2=arg(z2)
Also, z1=a+ib and z2=c+id
Therefore a=cosθ1, b=sinθ1, c=cosθ2 and d=sinθ2,
Also, R(z1¯¯¯¯¯z2) =0
⇒ R[(cosθ1+isinθ1)(cosθ2-isinθ2)]=0
⇒ R[cos(θ1-θ2)+isin(θ1-θ2)]=0
⇒ cos(θ1-θ2)=0 ⇒ (θ1-θ2) =π2 ⇒ θ1=θ2+π2
Now, w1 =a+ic=cosθ1+icosθ2=cosθ1+isinθ1
⇒ |w1|=1
similarly, |w2|=1
Next w1¯¯¯¯¯¯w2 = (cosθ1+isinθ1) (cosθ2-isinθ2)
=cos(θ1-θ2)+isin(θ1-θ2) ⇒ |w1¯¯¯¯¯¯w2|=1
Finally, R(¯¯¯¯¯¯w1w2) = R(w2¯¯¯¯¯¯w1)
= R[cosθ2+isinθ2) (cosθ1-isinθ1]
=R[cos(θ2-θ1)+isin(θ2-θ1)]
=cos(θ2-θ1)=cos(π2)=0