If z1 and z2 are two non-zero complex such that ∣ z1+z2∣=∣ z1∣+∣ z2∣, then arg (z1)− arg (z2) is equal to
CONVENTIONAL APPROACH
Let zi=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2)
∴∣ z1+z2∣[(r1cosθ1+r2cosθ2)2+(r2sinθ1+r2sinθ2)2]12
=[(r21+r22+2r1r2cos(θ1−θ2)2]12 (∵ ∣ z1+z2∣=∣ z1∣+∣ z2∣)
Therefore cos(θ1−θ2)=1⇒ θ1−θ2=0⇒ θ1=θ2
Thus arg (z1)−arg(z2)=0.
Tricks: ∣ z1+z2∣=∣ z1∣+∣ z2∣ ⇒ z1,z2 lies on same straight line.
∴ argz1=argz2⇒ argz1−arg z2=0