If z1=2cosπ4+isinπ4, z2=3cosπ3+isinπ3, then z1z2 is equal to
6
2
3
2+3
Explanation for the correct option.
Find the value of z1z2.
The magnitude of z1=2cosπ4+isinπ4is given as:
z1=22cos2π4+sin2π4=2×1cos2A+sin2A=1=2
The magnitude of z2=3cosπ3+isinπ3 is given as:
z2=32cos2π3+sin2π3=3×1cos2A+sin2A=1=3
So the value of the expression z1z2 is given as:
z1z2=z1·z2ab=a·b=2·3z1=2,z2=3=2×3a·b=ab=6
So the value of z1z2 is 6.
Hence, the correct option is C.