Question 126 (ii)
If Δ is an operation, such that for integers a and b. We have aΔb=a×b−2×a×b+b×b(−a)×b+b×b, then find
(−7)Δ(−1)
Also, show that (−7)Δ(−1)≠(−1)Δ(−7)
Now, put a = (-7) and b = (-1)
⇒(−7)Δ(−1)=(−7)×(−1)−2×(−7)×(−1)+(−1)×(−1){−(−7)}×(−1)+(−1)×(−1)=7−14+1×7×(−1)+17−14−7+1⇒−13
Now, put a = (-1) and b = (-7)
⇒(−1)Δ(−7)=(−1)×(−7)−2×(−1)×(−7)+(−7)×(−7)−(−1)×(−7)+(−7)×(−7)=7−14+49(1)×(−7)+49=7−14−343+49=−301
Clearly, (−7)Δ(−1)≠(−1)Δ(−7)