(ii) ax+by=c⋯ (1)bx+ay=1+c⋯ (2)
Multiplying equation (1) by a and equation (2) by b, we obtain
a2x+aby=ac⋯ (3)b2x+aby=b+bc⋯ (4)
Subtracting equation (4) from equation (3),
(a2−b2)x=ac−bc−b
x=c(a−b)−ba2−b2
From equation (1), we obtain
ax+by=ca{c(a−b)−ba2−b2}+by=cac(a−b)−aba2−b2+by=cby=c−ac(a−b)−aba2−b2by=a2c−b2c−a2c+abc−aba2−b2by=abc−b2c−aba2−b2by=b((ca−bc)−a)a2−b2y=c(a−b)−aa2−b2