Question 82 (iii)
Subtract
2ab2c2+4a2b2c−5a2bc2 from−10a2b2c+4ab2c2+2a2bc2
We have,
2ab2c2+4a2b2c−5a2bc2 and−10a2b2c+4ab2c2+2a2bc2
The required difference is given by
(−10a2b2c+4ab2c2+2a2bc2)−(2ab2c2+4a2b2c−5a2bc2)
=−10a2b2c+4ab2c2+2a2bc2−2ab2c2−4a2b2c+5a2bc2
=(−10a2b2c−4a2b2c)+(4ab2c2−2ab2c2)+(2a2bc2+5a2bc2)
[grouping like terms]
=−14a2b2c+2ab2c2+7a2bc2