The correct option is
B √a2−a+12z=x+iy (say)
Squaring both sides & comparing the real & imaginary parts
(x+iy)2=a+i√a4+a2+1x2−y2+2xyi=a+i√a4+a2+1
x2−y2=a-------------------------------(1)
2xy=√a4+a2+1------------------------------------(2)
(x+iy)2=a+i√a4+a2+1
taking modulus,
x2+y2=√a2+a4+a2+1=√(a2)2+2(a2)1+1
=√(a2+1)2
=a2+1
∴x2+y2=a2+1-----------------------------(3)
From (1) & (3),
x2=a2+a+12
∴y2=x2−a=a2+a+12−a
y2=a2−a+12
∴y=√a2−a+12