wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a Argand plane z1,z2 and z3 are respectively, the vertices of an isosceles triangle ABC with AC=BC and CAB=θ. If z4 is the center of triangle I, then the value of (z4z1)2(cosθ+1)secθ is

A
(z2z1)(z3z1)(z4z1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(z2z1)(z3z1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(z2z1)(z3z1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(z2z1)(z3z1)(z4z1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (z2z1)(z3z1)(z4z1)2
AB×AC(IA)2=ABIA×ACIA
IAB=θ2,IAC=θ2
z2z1z4z1=|z2z1||z4z1|eiθ2
and z3z1z4z1=|z3z1||z4z1|eiθ2
Multiplying,
z2z1z4z1z3z1z4z1=|z2z1||z4z1||z3z1||z4z1|
(z2z1)(z3z1)(z4z1)2=AB×ACIA4 (1)
From (1).
(z2z1)(z3z1)(z4z1)2=2(ADIA)2(ACAD)(AB=2AD)
(z2z1)(z3z1)=(z4z1)22cos2θ2secθ
=(z4z1)2(cosθ+1)secθ
339012_131502_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rotation concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon