In a Argand plane z1,z2 and z3 are respectively, the vertices of an isosceles triangle ABC with AC=BC and ∠CAB=θ. If z4 is the center of triangle I, then the value of (z4−z1)2(cosθ+1)secθ is
A
(z2−z1)(z3−z1)(z4−z1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(z2−z1)(z3−z1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(z2−z1)(z3−z1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(z2−z1)(z3−z1)(z4−z1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(z2−z1)(z3−z1)(z4−z1)2 AB×AC(IA)2=ABIA×ACIA ∠IAB=θ2,∠IAC=θ2 z2−z1z4−z1=|z2−z1||z4−z1|eiθ2 and z3−z1z4−z1=|z3−z1||z4−z1|eiθ2 Multiplying, z2−z1z4−z1z3−z1z4−z1=|z2−z1||z4−z1||z3−z1||z4−z1| ⇒(z2−z1)(z3−z1)(z4−z1)2=AB×ACIA4 (1) From (1). (z2−z1)(z3−z1)(z4−z1)2=2(ADIA)2(ACAD)(∵AB=2AD) ⇒(z2−z1)(z3−z1)=(z4−z1)22cos2θ2secθ =(z4−z1)2(cosθ+1)secθ