Let p be the principle
Given: Principle increases at the rate r% per year
dpdt=r%×p
dpdt=r100×p
dpp=r100×dt
Integrating both sides, we get
∫dpp=r100∫dt
log p=rt100+log c
log p−log c=rt100
log pc=rt100
pc=ert100...(i)
timet=0t=10Principal(p)100200
Substituting t=0,p=100 in(i),
100c=er×0100
100c=e0
c=100
Substituting value of c in (i),
P100=ert100...(ii)
Also, it given that Rs.100 will double itselft in 10 years
Substituting t=10,p=200 in (ii),
200100=e10r100
2=er10
Taking logboth sides,
log 2=r10
0.6931=r10
r=6.931%
Hence, rate of interest r=6.931%